

Plastic Ball FE Electronics Testing MIPP Upgrade

Boris Baldin, Paul Rubinov, and William Wester Fermilab

Outline

- · Electronics requirements
 - Charge measurements with separation of slow (~1 μs) and fast (~10 ns) PMT components
 - Dynamic range from .25 to 1000 pC charge
 - Trigger
 - Memory

PBFE PCB tests

- Use internal pulser to generate 1000 pulses on each of the 8 (0-7) channels
- Set the pulser for DAC setting of 100, 200, 400, 600, and 800 counts
- 1000 \times 8 \times 5 = 40,000 pulses which are digitized (15 slices per pulse baseline from ADC(1) and ADC(2)) and TDC timed
- 32392 pulses that are digitized with baseline ADC between 20-70 counts.
- 12605 pulses with good timing (trailing edge-leading edge>0 and 0 < Δ < 50 counts)

Some global features

- Most of the pulses that are lost (baseline=0) are with the lowest DAC=100 setting. Chan 1 also has some inefficiencies for DAC=100,200,400.
- Sometimes, the contents of the ADC are >500 counts for Chan 1 DAC=100 (757 instances).
- Chan 1 also has a baseline ~80-83 counts for DAC=400 (171 instances total w/98 bad timing).
- Timing is missing on most of the pulses especially for DAC=100, but across all channels.
- 3 pulses have timing recorded but the leading edge is at later time than the trailing edge.

"Good" pulses and timings vs DAC and chan

- Look at DAC setting + 10 x channel
- Top plot shows pulses with good digitization.
- Bottom plot shows pulses with good timing.

Focus on good pulses

- · Define some pusle quantities
 - Baseline = $\frac{1}{2}$ x [adc(1)+adc(2)]. This varies from channel to channel from 26-58 counts.
 - Qsum = sum from i=1 to 15 of adc(i)
 - Qbavg = sum from i=1 to 15 of adc(i) 15 x the average baseline for that channel.
 - Qbavg311 = sum from i = 3 to 11 of adc(i) 8x the average baseline.
- Timing quantities
 - Leading and trailing edges are digitized

Baseline variation

Look in detail at the variation of ADC bin 1

The top plot shows some detail for channel 5 – it is an expanded view of the bottom plot. Here you can see adc(1) for the different DAC settings. The 1000 events for each DAC setting are divided up as a function of acquistion to see if there is a drift vs time. The red box on the top shows the last bit of data recorded with DAC=800 where adc(1) varies between 40, 41, and 42 counts. The bottom plot shows all the channels and thus the chan-to-chan variation.

Use average baseline

 The baseline fluctuates event-by-event by about +/- a count. This adds up if you use it to subtract all 15 ADC slices.

Channel 6 with DAC=800

Top plot: Qsum minus
15 x baseline
(which varies event-by-event)

Bottom plot: Qsum minus 15 x <u>average</u> baseline

(averaged over all events for the channel, and less susceptiable to fluctuations.)

Better resolution using adc(i) for i = 3 to 11

Channel 6 with DAC=800

Top plot: Qsum minus 15 x average baseline

Bottom plot: Qsum from adc(3) to adc(11) minus 8 x average baseline

Qbavg311

 Look at the channel response to the five different DAC settings.

Resolution on a channel

Use Chan 4 DAC=600 and Chan 6 DAC=400

(increased width was just a histogram binning effect).

01/28/09 W. Wester, Fermilab

Linearity

Mean of Qbavg311 vs DAC setting vs chan

01/28/09 W. Wester, Fermilab

12

Digitzied pulse shape (1)

Digitzied pulse shape (2)

Timing

12605 good pulses with good timing

Timing

- Near single count resolution for each DAC/channel
- Variation of 1 or 2 counts except chan 3 DAC=600

Time difference

12605 good pulses with good timing

01/28/09

W. Wester, Fermilab